Setaria viridis: a model for C4 photosynthesis.

نویسندگان

  • Thomas P Brutnell
  • Lin Wang
  • Kerry Swartwood
  • Alexander Goldschmidt
  • David Jackson
  • Xin-Guang Zhu
  • Elizabeth Kellogg
  • Joyce Van Eck
چکیده

C(4) photosynthesis drives productivity in several major food crops and bioenergy grasses, including maize (Zea mays), sugarcane (Saccharum officinarum), sorghum (Sorghum bicolor), Miscanthus x giganteus, and switchgrass (Panicum virgatum). Gains in productivity associated with C(4) photosynthesis include improved water and nitrogen use efficiencies. Thus, engineering C(4) traits into C(3) crops is an attractive target for crop improvement. However, the lack of a small, rapid cycling genetic model system to study C(4) photosynthesis has limited progress in dissecting the regulatory networks underlying the C(4) syndrome. Setaria viridis is a member of the Panicoideae clade and is a close relative of several major feed, fuel, and bioenergy grasses. It is a true diploid with a relatively small genome of ~510 Mb. Its short stature, simple growth requirements, and rapid life cycle will greatly facilitate genetic studies of the C(4) grasses. Importantly, S. viridis uses an NADP-malic enzyme subtype C(4) photosynthetic system to fix carbon and therefore is a potentially powerful model system for dissecting C(4) photosynthesis. Here, we summarize some of the recent advances that promise greatly to accelerate the use of S. viridis as a genetic system. These include our recent successful efforts at regenerating plants from seed callus, establishing a transient transformation system, and developing stable transformation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Phenotyping Assays for the Model Monocot Setaria viridis

Setaria viridis (green foxtail) is an important model plant for the study of C4 photosynthesis in panicoid grasses, and is fast emerging as a system of choice for the study of plant development, domestication, abiotic stress responses and evolution. Basic research findings in Setaria are expected to advance research not only in this species and its close relative S. italica (foxtail millet), bu...

متن کامل

Temperature Responses of C4 Photosynthesis: Biochemical Analysis of Rubisco, Phosphoenolpyruvate Carboxylase, and Carbonic Anhydrase in Setaria viridis.

The photosynthetic assimilation of CO2 in C4 plants is potentially limited by the enzymatic rates of Rubisco, phosphoenolpyruvate carboxylase (PEPc), and carbonic anhydrase (CA). Therefore, the activity and kinetic properties of these enzymes are needed to accurately parameterize C4 biochemical models of leaf CO2 exchange in response to changes in CO2 availability and temperature. There are cur...

متن کامل

The Use of Maleic Hydrazide for Effective Hybridization of Setaria viridis

An efficient method for crossing green foxtail (Setaria viridis) is currently lacking. S. viridis is considered to be the new model plant for the study of C4 system in monocots and so an effective crossing protocol is urgently needed. S. viridis is a small grass with C4-NADP (ME) type of photosynthesis and has the advantage of having small genome of about 515 Mb, small plant stature, short life...

متن کامل

Molecular diversity and population structure of Chinese green foxtail [Setaria viridis (L.) Beauv.] revealed by microsatellite analysis

Green foxtail (Setaria viridis) is a new model plant for the genomic investigation of C4 photosynthesis biology. As the ancestor of foxtail millet (Setaria italica), an ancient cereal of great importance in arid regions of the world, green foxtail is crucial for the study of domestication and evolution of this ancient crop. In the present study, 288 green foxtail accessions, which were collecte...

متن کامل

Setaria viridis floral-dip: A simple and rapid Agrobacterium-mediated transformation method

Setaria viridis was recently described as a new monocotyledonous model species for C4 photosynthesis research and genetic transformation. It has biological attributes (rapid life cycle, small genome, diploid, short stature and simple growth requirements) that make it suitable for use as a model plant. We report an alternative method of S. viridis transformation using floral dip to circumvent th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 22 8  شماره 

صفحات  -

تاریخ انتشار 2010